三角比 (公式)

三角比

還元公式

$$\sin(90^{\circ} - \theta) = \cos \theta \\
\cos(90^{\circ} - \theta) = \sin \theta \\
\tan(90^{\circ} - \theta) = \frac{1}{\tan \theta}$$

$$\begin{cases}
\sin(180^{\circ} - \theta) = \sin \theta \\
\cos(180^{\circ} - \theta) = -\cos \theta \\
\tan(180^{\circ} - \theta) = -\tan \theta
\end{cases}$$

還元公式の解き方

- ① $\sin \theta$, $\cos \theta$ の決定 90° なら $\sin \theta \rightarrow \cos \theta$, $\cos \theta \rightarrow \sin \theta$ 180° なら $\sin \theta \rightarrow \sin \theta$, $\cos \theta \rightarrow \cos \theta$
- ② \bigoplus の決定 $\theta = 30^{\circ}$ と考えて、そのときの符号をつける。
- $* tan \theta は tan \theta = \frac{\sin \theta}{\cos \theta}$ を利用。

例1 $\sin(90^{\circ} - \theta)$

- ① 90° なので $\sin \theta \rightarrow \cos \theta$
- ② $\sin(90^{\circ}-30^{\circ}) = \sin 60^{\circ}$ の符号は ① よって $\sin(90^{\circ}-\theta) = (+)\cos \theta$

例2
$$\cos(180^{\circ} - \theta)$$

- $\bigcirc 180^{\circ} \% \mathcal{O} \mathcal{C} \cos \theta \rightarrow \cos \theta$
- ② $\cos(180^{\circ} 30^{\circ}) = \cos 150^{\circ}$ の符号は 〇 よって $\cos(180^{\circ} \theta) = \bigcirc \cos \theta$

三角比の相互関係

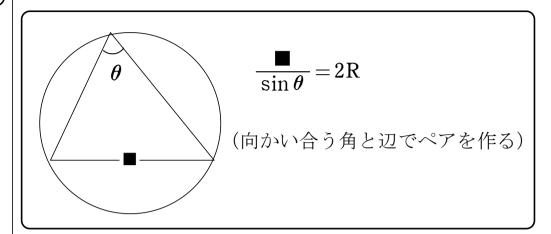
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

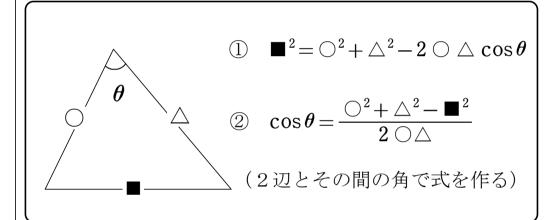
$$\tan^2 \theta + 1 = \cos^2 \theta$$

$$\Rightarrow \cos^2 \theta$$

正弦定理 (外接円の半径)



余弦定理



三角形の面積



三角形の面積②(内接円の半径)

